Products of Lindelöf T2-spaces are Lindelöf — in some models of ZF

نویسنده

  • Horst Herrlich
چکیده

The stability of the Lindelöf property under the formation of products and of sums is investigated in ZF (= Zermelo-Fraenkel set theory without AC, the axiom of choice). It is • not surprising that countable summability of the Lindelöf property requires some weak choice principle, • highly surprising, however, that productivity of the Lindelöf property is guaranteed by a drastic failure of AC, • amusing that finite summability of the Lindelöf property takes place if either some weak choice principle holds or if AC fails drastically. Main results: 1. Lindelöf = compact for T1-spaces iff CC(R), the axiom of countable choice for subsets of the reals, fails. 2. Lindelöf T1-spaces are finitely productive iff CC(R) fails. 3. Lindelöf T2-spaces are productive iff CC(R) fails and BPI, the Boolean prime ideal theorem, holds. 4. Arbitrary products and countable sums of compact T1-spaces are Lindelöf iff AC holds. 5. Lindelöf spaces are countably summable iff CC, the axiom of countable choice, holds. 6. Lindelöf spaces are finitely summable iff either CC holds or CC(R) fails. 7. Lindelöf T2-spaces are T3 spaces iff CC(R) fails. 8. Totally disconnected Lindelöf T2-spaces are zerodimensional iff CC(R) fails.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pairwise Weakly Regular-Lindelöf Spaces

We will introduce and study the pairwise weakly regular-Lindelöf bitopological spaces and obtain some results. Furthermore, we study the pairwise weakly regular-Lindelöf subspaces and subsets, and investigate some of their characterizations. We also show that a pairwise weakly regularLindelöf property is not a hereditary property. Some counterexamples will be considered in order to establish so...

متن کامل

Monotonically Compact and Monotonically Lindelöf Spaces

We answer questions of Bennett, Lutzer, and Matveev by showing that any monotonically compact LOTS is metrizable, and any first-countable Lindelöf GO-space is monotoncically Lindelöf. We also show that any compact monotonically Lindelöf space is first-countable, and is metrizable if scattered, and that separable monotonically compact spaces are metrizable.

متن کامل

Locally compact linearly Lindelöf spaces

There is a locally compact Hausdorff space which is linearly Lindelöf and not Lindelöf. This answers a question of Arhangel’skii and Buzyakova.

متن کامل

Isomorphisms of Spaces of Continuous Affine Functions on Compact Convex Sets with Lindelöf Boundaries

Let X, Y be compact convex sets such that every extreme point of X and Y is a weak peak point and both extX and extY are Lindelöf spaces. We prove that, if there exists an isomorphism T : Ac(X) → Ac(Y ) with ‖T‖ · ‖T‖ < 2, then extX is homeomorphic to extY . This generalizes results of H.B. Cohen and C.H. Chu.

متن کامل

Reflecting Lindelöf and Converging Ω1-sequences

We deal with a conjectured dichotomy for compact Hausdorff spaces: each such space contains a non-trivial converging ω-sequence or a non-trivial converging ω1-sequence. We establish that this dichotomy holds in a variety of models; these include the Cohen models, the random real models and any model obtained from a model of CH by an iteration of property K posets. In fact in these models every ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010